Двигатели постоянного тока пуск, регулировка скорости, тормозные режимы

План

Введение           3
1. Устройство двигателя        4
2. Пуск двигателя постоянного тока      10
3. Регулировка скорости        11
4. Тормозные режимы         17
Заключение          21
Список литературы         22

Введение

Двигатели постоянного тока находят широкое применение в промышленных, транспортных и других установках, где требуется широкое и плавное регулирование скорости вращения (прокатные станы, мощные металлорежущие станки, электрическая тяга на транспорте и т. д.).
По способу возбуждения двигатели постоянного тока подразделяются аналогично генераторам на двигатели независимого, параллельного, последовательного и смешанного возбуждения.

1. Устройство двигателя

Конструктивно машина постоянного тока состоит из неподвижного статора (индуктора) с полюсами и вращающегося ротора (якоря) с коллектором. Статор является источником магнитного поля и механическим остовом машины, якорь - часть машины, в обмотке которой индуцируется э. д. с.

Рис. 1. Устройство простейшего двигателя постоянного тока

На одном валу с якорем жестко закрепляется коллектор, электрически соединенный с его обмоткой. Коллектор - характерная деталь машины постоянного тока. Его медных пластин касаются неподвижные угольно-графитовые щетки, размещенные в щеткодержателях на траверсе и электрически соединенные с внешней цепью. Во избежание искрения щетки тщательно притираются к коллектору, а их умеренный нажим должен быть отрегулирован [1, c. 66].
Принцип действия машин постоянного тока основан на законе электромагнитной индукции и законе Ампера. Магнитное поле машины создается постоянным током (током возбуждения) в обмотке полюсов или постоянными магнитами в машинах малой мощности. Его силовые линии замыкаются через стальные станину, сердечники полюсов и сердечник якоря, дважды преодолевая на своем пути воздушный зазор между ними. Магнитная цепь четырехполюсной машины постоянного тока разветвленная, симметричная. Плоскость, проходящую через ось машины под углом а, при котором она перпендикулярна к силовым линиям, называют геометрической нейтралью (при а. = 0).
Существует два режима работы эл. двигателей
а: режим генератора
б: режим двигателя
В режиме генератора машина преобразует механическую энергию в электрическую: к обмотке возбуждения статора подводится постоянный ток возбуждения, а якорь вращается каким-либо первичным двигателем. При этом провода обмотки якоря пересекают магнитные силовые линии полюсов и в них индуцируются э. д. с. С помощью коллектора и щеток, которые являются механическим выпрямителем, эти переменные пульсирующие э. д. с. суммируются в постоянную по значению и направлению э. д. с. машины Е. Если к щеткам подключить приемник, то в нем установится постоянный   ток I [5, c. 172].
В режиме двигателя машина преобразует электрическую энергию в механическую: к якорю и к обмотке возбуждения машины одновременно подводится постоянный ток от источника. Взаимодействие магнитного поля полюсов статора с током обмотки якоря создает вращающий электромагнитный момент, который и приводит в движение якорь (ротор).
Статор (индуктор) машины постоянного тока состоит из цилиндрической станины (корпуса), полюсов с обмоткой возбуждения и подшипниковых щитов.
Станина, являющаяся основой неподвижной части машины, отливается или выполняется сварной из стали с большой магнитной проницаемостью, так как играет роль и магнитопровода. На внутренней стороне станины располагаются симметрично полюсы. В машинах малой и средней мощностей к цилиндрической танине с торцов крепятся подшипниковые щиты с подшипниками. В мощных машинах подшипники иногда выносятся на отдельные стояки.
Основные полюсы с током в катушках обмотки создают в машине магнитное поле. Каждый полюс является электромагнитом, состоит из стального сердечника с полюсным наконечником (башмаком) и катушечной обмотки из изолированного медного провода. Обмотка основных полюсов составляет обмотку возбуждения машины. Сердечник полюса для уменьшения потерь на вихревые токи (возникающих в полюсном наконечнике из-за пульсации магнитной индукции при вращении якоря с зубчатой поверхностью) набирается в виде пакета из листовой электротехнической стали толщиной 0,5-2 мм и стягивается шпильками. Полюсы крепятся к станине болтами или шпильками [5, c. 175].
Добавочные полюсы устроены аналогично, но их сердечники чаще делаются из литой стали и имеют малую магнитную индукцию. Они устанавливаются симметрично между основными полюсами, содержат обмотку из толстого изолированного провода (включается последовательно с якорем) и предназначаются для устранения искрения щеток.
Якорь (ротор) машины постоянного тока состоит из стального вала, стального сердечника, обмотки и коллектора.
Сердечник якоря представляет собой цилиндрический барабан, в продольных наружных пазах которого размещается обмотка якоря. Для уменьшения потерь на вихревые токи (во время работы якорь вращается в постоянном и неподвижном магнитном поле статора) сердечник набирается из изолированных штампованных листов электротехнической стали толщиной 0,35 или 0,5 мм. Сердечник жестко закрепляется на валу (шпонкой или нажимными шайбами). Для лучшего охлаждения в сердечнике якоря имеются осевые вентиляционные каналы, а в машинах большой мощности - и радиальные каналы между пакетами сердечника. В машинах малой и средней мощностей применяется самовентиляция - воздух прогоняется вентилятором, который насаживается на вал якоря, в машинах большой мощности используется независимое охлаждение - от вентилятора с собственным приводом. В сердечниках якоря имеются пазы разнообразной формы: полузакрытый грушевидный, и открытый прямоугольный.
Коллектор набирается из клинообразных медных пластин (ламелей), которые изолируются друг от друга миканитом. В прорезь выступа коллекторной пластины впаиваются два конца соседних секций обмотки якоря [4, c. 201].
В машинах малой мощности с частотой вращения до 10 тыс. об/мин коллектор может иметь пластмассовый корпус.
Обмотка якоря машины постоянного тока электрически замкнута. Однако, поскольку она выполнена симметричной, как и чередующиеся полюсы статора, алгебраическая сумма индуцированных в ней пульсирующих э. д. с. равна нулю и ток в контуре обмотки отсутствует. Для получения на обмотке якоря эквивалентной выпрямленной э. д. с., которая является источником постоянного тока для внешней цепи, используются коллектор и щетки.
Работа коллектора наглядно может быть иллюстрирована схемой кольцевого якоря, где обмотка якоря изображена без кольцевого сердечника в виде шести витков-секций, соединенных в замкнутый контур и связанных электрически с коллектором. Чтобы не затемнять схему, условно щетки с выводами для внешней цепи изображены на внутренней стороне пластин коллектора. Направление э. д. с. в витках обмотки якоря, вращающегося с угловой частотой  относительно неподвижных полюсов и щеток, определяется правилом правой руки. Как следует из рис. 2.4,а, обмотка якоря делится щетками на две параллельные симметричные ветви, э. д. с. которых направлены встречно [4, c. 202].
Для получения наибольшего возможного значения эквивалентной выпрямленной э. д. с. е во внешней цепи щетки устанавливаются на геометрической нейтрали, т. е. в таком положении, чтобы они соединялись через коллекторные пластины с секциями обмотки, которые в данный момент проходят через геометрическую нейтраль и не пересекают линии магнитного поля статора (е == 0). Как в верхней, так и в нижней ветви обмотки (см. рис. 2.4,и) пульсирующие переменные э. д. с. отдельных секций складываются. Следовательно, эквивалентная э. д. с. машины е между щетками равна сумме мгновенных э.д.с.ек всех секций верхней или нижней ветви обмотки:
е= е1+е2+е3=е4+е5+е6
и является пульсирующей, как показано на графиках э. д. с.
При вращении якоря, благодаря симметрии машины, эквивалентная э. д. с. е между щетками пульсирует мало: выход из состава верхней ветви одной секции, например 1(е1) при правом вращении, одновременно компенсируется переходом в эту ветвь противоположно расположенной секции 4 (е4) из нижней ветви. При этом их э. д. с. меняют направление, так как наводятся полями других полюсов.
В реальных машинах постоянного тока обмотка якоря насчитывает десятки секций (соответственно столько же пластин имеет коллектор) и пульсация выпрямленной э. д. с. становится практически незаметной. Поэтому э. д. с. якоря Е оказывается постоянной .
В двухполюсной машине имеются две параллельных ветви в обмотке якоря, т. е. число пар параллельных ветвей а = 1. С увеличением числа полюсов (и щеток) в машине соответственно возрастает и число пар параллельных ветвей обмотки якоря. Для четырехполюсной машины а = 2.
Современные машины имеют барабанный якорь с двухслойной обмоткой, которая по типу может быть петлевой (параллельной), волновой (последовательной) и комбинированной, сочетающей в себе элементы двух первых [4, c. 205].
Обмотка якоря составляется из отдельных секций, концы которых припаиваются к пластинам коллектора. Секции имеют по два активных участка и могут состоять из одного, двух или нескольких витков. Секции обмотки укладываются в пазах барабана якоря в два слоя (один участок вверху одного паза, другой - внизу другого паза) и в определенном порядке, чтобы при вращении якоря их участки всегда находились под разными полюсами статора (отстояли друг от друга примерно на одно полюсное деление т), т. е. чтобы индуцированные в них э. д. с. действовали согласно и складывались.
Для правильной укладки секций обмотки в пазах барабана якоря и соединения их с коллектором необходимо знать: полюсное деление, шаги обмотки по якорю и шаг по коллектору. Полюсное деление  - это окружости якоря, приходящаяся на один полюс, или расстояние между осями соседних полюсов:

где D - диаметр якоря; 2р - число основных полюсов (р – число пар полюсов) машины.
Петлевая обмотка наматывается так, что конец ее последней секции соединяется с началом первой т. е. она всегда замкнута. При обходе замкнутой петлевой обмотки э д. с. в ее секциях изменяют свое направление под каждым полюсом. Обмотка делится на число пар параллельных ветвей а равное числу пар основных полюсов машины, т. е. для петлевой обмотки всегда
a=p
Такое деление обмотки фиксируется щетками на коллекторе. Число щеток равно числу основных полюсов машины. Щетки устанавливаются на коллекторе по оси полюсов (при наличии добавочных полюсов) так, чтобы они соединялись с участками секции, которые в данный момент почти не пересекают силовые линии. Каждая щетка обычно перекрывает на коллекторе несколько пластин. Так как секции в каждой параллельной ветви обмотки соединены последовательно, то их э. д. с. складываются. В машине все параллельные ветви и их щетки соединяются параллельно, поэтому петлевая обмотка называется еще параллельной [5, c. 177].
Концы секций волновой обмотки присоединяются к пластинам коллектора, расстояние между которыми почти равно двойному полюсному делению. Эта обмотка несколько раз обходит якорь по окружности, прежде чем ее стержни займут все пазы и конец последней секции соединится с началом первой. Индуцированные в участках секции переменные э. д. с. имеют согласованное направление.
В волновой обмотке, в отличие от петлевой, число параллельных ветвей всегда равно двум независимо от числа полюсов машины, т. е.,
a = 1
Так получается потому, что каждая половина секций, расположенных под основными «северными» N или «южными» 5 полюсами, образует лишь одну параллельную ветвь. Однако для уменьшения размеров коллектора и разгрузки щеток в машинах с волновой обмоткой число щеток берут равным числу основных полюсов 2р и соединяют их через одну в две цепи.
Комбинированная обмотка применяется в мощных машинах постоянного тока при напряжении свыше 600 В.

Страниц: 1 2
Здесь вы можете написать комментарий

* Обязательные для заполнения поля
Все отзывы проходят модерацию.
Архив сайта
Навигация
Связаться с нами
Наши контакты

magref@inbox.ru

+7(951)457-46-96

О сайте

Magref.ru - один из немногих образовательных сайтов рунета, поставивший перед собой цель не только продавать, но делиться информацией. Мы готовы к активному сотрудничеству!