Способы отбора и виды выборки

6 Июн 2014 | Автор: | Комментарий один »

Содержание

Введение 3
1. Понятие и сущность выборочного наблюдения 4
2. Формирование выборочной совокупности 8
3. Виды выборки 10
Заключение 16
Список литературы 17

Введение

В теории выборочного метода разработаны различные способы отбора и виды выборки, обеспечивающие репрезентативность. Под способом отбора понимают порядок отбора единиц из генеральной совокупности. Различают два способа отбора: повторный и бесповторный. При повторном отборе каждая отобранная в случайном порядке единица после ее обследования возвращается в генеральную совокупность и при последующем отборе может снова попасть в выборку. Этот способ отбора построен по схеме «возвращенного шара»: вероятность попасть в выборку для каждой единицы генеральной совокупности не меняется независимо от числа отбираемых единиц. При бесповторном отборе каждая единица, отобранная в случайном порядке, после ее обследования в генеральную совокупность не возвращается. Этот способ отбора построен по схеме «невозвращенного шара»: вероятность попасть в выборку для каждой единицы генеральной совокупности увеличивается по мере производства отбора.
Целью работы является анализ способов отбора и вдов выборки.
Объект работы – выборочный метод в статистике.
Предмет работы – понятие и способы отбора, виды выборки.
Цель и задачи работы обусловили постановку следующих целей:
1) проанализировать понятие и сущность выборочного метода;
2) определить виды и способы отбора и выборки.
Структура работы. Данная работа состоит из введения, трех параграфов, заключения, списка литературы.

1. Понятие и сущность выборочного наблюдения

Статистическое наблюдение можно организовать как сплошное и несплошное. Сплошное предусматривает обследование всех единиц изучаемой совокупности явления, несплошное - лишь ее части. К несплошному относится и выборочное наблюдение [5, c. 122].
Выборочное наблюдение является одним из наиболее широко применяемых видов несплошного наблюдения. В основе этого наблюдения лежит идея о том, что отобранная в случайном порядке некоторая часть единиц может представлять всю изучаемую совокупность явления по интересующим исследователя признакам. Целью выборочного наблюдения является получение информации, прежде всего, для определения сводных обобщающих характеристик всей изучаемой (генеральной) совокупности. По своей цели выборочное наблюдение совпадает с одной из задач сплошного наблюдения, и поэтому встает вопрос о том, какое из двух видов наблюдения - сплошное или выборочное - целесообразнее провести.
При решении этого вопроса необходимо исходить из следующих основных требований, предъявляемых к статистическому наблюдению:
 информация должна быть достоверной, т.е. максимально соответствовать реальной действительности;
 сведения должны быть достаточно полными для решения задач исследования;
 отбор информации должен быть проведен в максимально сжатые сроки для использования ее в оперативных целях;
 денежные и трудовые затраты на организацию и проведение должны быть минимальными [5, c. 127].
При выборочном наблюдении эти требования обеспечиваются в большей мере, чем при сплошном. Преимущества этого метода по сравнению со сплошным можно оценить, если оно организовано и проведено в строгом соответствии с научными принципами теории выборочного метода, а именно обеспечение случайности отбора единиц и достаточного их числа. Соблюдение этих принципов позволяет получить такую совокупность единиц, которая представляет всю изучаемую совокупность по интересующим исследователя признакам, т.е. является репрезентативной (представительной).
При проведении выборочного наблюдения обследуются не все единицы изучаемого объекта, т.е. не все единицы совокупности, а лишь некоторая специально отобранная часть. Первый принцип отбора - обеспечение случайности - заключается в том, что при отборе каждой из единиц изучаемой совокупности обеспечивается равная возможность попасть в выборку. Случайный отбор - это не беспорядочный отбор, а отбор при соблюдении определенной методики, например, осуществление отбора по жребию, применение таблицы случайных чисел и т.д. [5, c. 128]
Второй принцип отбора - обеспечение достаточного числа отобранных единиц - тесно связан с понятием репрезентативности выборки. Поскольку любое выборочное наблюдение проводится с определенной целью и четко сформулированными конкретными задачами, то понятие репрезентативности как раз и связано с целью и задачами исследования. Отобранная из всей изучаемой совокупности часть должна быть репрезентативной, прежде всего, в отношении тех признаков, которые изучаются или оказывают существенное влияние на формирование сводных обобщающих характеристик.
В выборочном наблюдении используются понятия «генеральная совокупность» - изучаемая совокупность единиц, подлежащая изучению по интересующим исследователя признакам, и «выборочная совокупность» - случайно выбранная из генеральной совокупности некоторая ее часть. К данной выборке предъявляется требование репрезентативности, т.е. при изучении лишь части генеральной совокупности полученные выводы можно применять ко всей совокупности.
Характеристиками генеральной и выборочной совокупностей могут служить средние значения изучаемых признаков, их дисперсии и средние квадратические отклонения, мода и медиана и др. Исследователя могут интересовать и распределение единиц по изучаемым признакам в генеральной и выборочной совокупностях. В этом случае частоты называются соответственно генеральными и выборочными.
Репрезентативность выборки обеспечивается соблюдением принципа случайности отбора объектов совокупности в выборку. Если совокупность является качественно однородной, то принцип случайности реализуется простым случайным отбором объектов выборки. Простым случайным отбором называют такую процедуру образования выборки, которая обеспечивает для каждой единицы совокупности одинаковую вероятность быть выбранной для наблюдения для любой выборки заданного объема. Таким образом, цель выборочного метода - сделать вывод о значении признаков генеральной совокупности на основе информации случайной выборки из этой совокупности.
Между признаками выборочной совокупности и признаками генеральной совокупности, как правило, существует некоторое расхождение, которое называется ошибкой статистического наблюдения. При массовом наблюдении ошибки неизбежны, но возникают они в результате действия различных причин. Величина возможной ошибки выборочного признака происходит из-за ошибок регистрации и ошибок репрезентативности [7, c. 211].
Ошибки регистрации, или технические ошибки, связаны с недостаточной квалификацией наблюдателей, неточностью подсчетов, несовершенством приборов и т.п. Под ошибкой репрезентативности (представительства) понимают расхождение между выборочной характеристикой и разыскиваемой (истинной) характеристикой генеральной совокупности. Ошибки репрезентативности бывают случайными и систематическими.
Систематические ошибки связаны с нарушением установленных правил отбора. Случайные ошибки объясняются недостаточно равномерным представлением в выборочной совокупности различных категорий единиц генеральной совокупности.
В результате первой причины (систематическая ошибка) выборка легко может оказаться смещенной, т.к. при отборе каждой единицы допускается ошибка, всегда направленная в одну и ту же сторону. Эта ошибка получила название ошибки смещения. Ее размер может превышать величину случайной ошибки. Особенность ошибки смещения состоит в том, что, являясь постоянной частью ошибки репрезентативности, она увеличивается с увеличением объема выборки.
Случайная же ошибка с увеличением объема выборки уменьшается. Кроме того, величину случайной ошибки можно определить, тогда как размер ошибки смещения практически определить очень сложно, а иногда и невозможно, поэтому важно знать причины, вызывающие ошибку смещения, и предусмотреть мероприятия по ее устранению.
Ошибки смещения бывают преднамеренные и непреднамеренные. Причиной возникновения преднамеренной ошибки является тенденциозный подход к выбору единиц из генеральной совокупности. Чтобы не допустить появления такой ошибки, необходимо соблюдать принцип случайности отбора единиц [7, c. 212].
Непреднамеренные ошибки могут возникать на стадии подготовки выборочного наблюдения, формирования выборочной совокупности и анализа ее данных. Чтобы не допустить появления таких ошибок, необходима хорошая основа выборки, т.е. та генеральная совокупность, из которой предполагается производить отбор, например, список единиц отбора. Основа выборки должна быть достоверной, полной и соответствовать цели исследования, а единицы отбора и их характеристики должны соответствовать действительному их состоянию на момент подготовки выборочного наблюдения. Нередки случаи, когда в отношении некоторых единиц, попавших в выборку, трудно собрать сведения из-за их отсутствия на момент наблюдения, нежелания дать сведения и т.п. В таких случаях эти единицы приходится заменять другими. Необходимо следить, чтобы замена осуществлялась равноценными единицами.
Случайная ошибка выборки возникает в результате случайных различий между единицами, попавшими в выборку, и единицами генеральной совокупности, т.е. она связана со случайным отбором. Теоретическим обоснованием работы со случайными ошибками выборки является теория вероятностей и ее предельные теоремы.

2. Формирование выборочной совокупности

Вид формирования выборочной совокупности подразделяется на индивидуальный, групповой и комбинированный.
Способ отбора может быть бесповторный и повторный.
Бесповторным называется такой отбор, при котором попавшая в выборку единица не возвращается в совокупность, из которой осуществляется дальнейший отбор. При этом объем генеральной совокупности по мере формирования выборки уменьшается.
При повторном отборе попавшая в выборку единица после регистрации наблюдаемых признаков возвращается в исходную (генеральную) совокупность для участия в дальнейшей процедуре отбора. В этом случае объем генеральной совокупности остается постоянным, что упрощает формулы ошибок.
Метод отбора определяет конкретный механизм выборки единиц из генеральной совокупности и подразделяется на:
 собственно случайный;
 механический;
 типический;
 серийный;
 комбинированный.
Рассмотрим более подробно собственно случайный отбор, который технически проводится методом жеребьевки или по таблице случайных чисел.
Собственно случайный отбор может быть повторным и бесповторным.
Средняя ошибка повторной собственно случайной выборки определяется по зависимости [7, c. 189].
Механический отбор применяется в тех случаях, когда генеральная совокупность каким-либо образом упорядочена, т.е. имеется определенная последовательность в расположении единиц (табельные номера работников, списки избирателей, телефонные номера респондентов, номера домов и квартир и т.п.).
Для определения средней ошибки механической выборки используется формула средней ошибки при собственно случайном бесповторном отборе.
Типический отбор используется, когда все единицы генеральной совокупности можно разбить на несколько типических групп.
При исследовании населения такими группами могут быть районы, социальные, возрастные или образовательные группы и т.д. Типический отбор предполагает выборку единиц из каждой группы собственно случайным или механическим способом.
Серийный отбор применяется в тех случаях, когда единицы совокупности объединены в небольшие группы или серии. Например: упаковки с определенным количеством готовой продукции, партии товара, студенческие группы, бригады и.т.п. Сущность серийной выборки заключается в собственно случайном либо механическом отборе серий, внутри которых производится сплошное исследование единиц.
Комбинированный отбор - это комбинация рассмотренных выше способов отбора.
Для определения необходимой численности выборки исследователь должен знать уровень точности выборочной совокупности с определенной вероятностью.
В общем случае необходимая численность выборки прямо пропорциональна дисперсии признака и квадрату коэффициента доверия t2 .
Зависимости для определения необходимого объема выборки для некоторых способов формирования выборочной совокупности приведены в формуле.
При большом числе единиц выборочной совокупности (n >100) распределение случайных ошибок выборочной средней в соответствии с теоремой А.М. Ляпунова нормально или приближается к нормальному по мере увеличения числа наблюдений.
Однако в практике статистического исследования в условиях рыночной экономики все чаще приходится сталкиваться с малыми выборками.
Малой выборкой называется такое выборочное наблюдение, численность единиц которого не превышает 30.
Разработка теории малой выборки была начата английским статистиком В.С. Госсетом (печатавшимся под псевдонимом Стьюдент). Он доказал, что оценка расхождения между средней малой выборки и генеральной средней имеет особый закон распределения.
При оценке результатов малой выборки величина генеральной совокупности уже не используется. Для определения возможных пределов ошибки пользуются распределением Стьюдента и критерием Стьюдента, определяемым по формуле:
, (8.8)
где -  средняя ошибка малой выборки.
Величина σ вычисляется на основе данных выборочного наблюдения. Она равна:
.

3. Виды выборки

Выборочная совокупность формируется по принципу массовых вероятностных процессов без каких бы то ни было исключений от принятой схемы отбора; необходимо обеспечить относительную однородность выборочной совокупности или ее разделение на однородные группы единиц. При формировании выборочной совокупности должно быть дано четкое определение единицы отбора. Желателен приблизительно одинаковый размер единиц отбора, причем результаты будут тем точнее, чем меньше единица отбора.
Возможны три способа отбора: случайный отбор, отбор единиц по определенной схеме, сочетание первого и второго способов [6, c. 99].
Если отбор в соответствии с принятой схемой проводится из генеральной совокупности, предварительно разделенной на типы (слои или страты), то такая выборка называется типической (или расслоенной, или стратифицированной, или районированной). Еще одно деление выборки по видам определяется тем, что является единицей отбора: единица наблюдения или серия единиц (иногда используют термин «гнездо»). В последнем случае выборка называется серийной, или гнездовой. На практике часто используется сочетание типической выборки с отбором сериями. В математической статистике, обсуждая проблему отбора данных, обязательно вводят деление выборки на повторную и бесповторную. Первая соответствует схеме возвратного шара, вторая - безвозвратного (при рассмотрении процесса отбора данных на примере отбора шаров разного цвета из урны). В социально-экономической статистике нет смысла применять повторную выборку, поэтому, как правило, имеется в виду бесповторный отбор. Если выборка производится по схеме возвращенного шара, то вероятность попадания любой единицы в выборку равна MN, и она остается той же самой на протяжении всей процедуры отбора. Если выборка производится по схеме невозвращенного шара, то вероятность попадания единицы в выборку изменяется от  - для первой отбираемой единицы, до  - для последней.
Так как социально-экономические объекты имеют сложную структуру, то выборку бывает довольно трудно организовать. Например, чтобы провести отбор домохозяйств при изучении потребления населением крупного города, легче произвести сначала отбор территориальных ячеек, жилых домов, потом квартир или домохозяйств, затем респондента. Такая выборка называется многоступенчатой. На каждой ступени используются разные единицы отбора: более крупные - на начальных ступенях, на последней ступени единица отбора совпадает с единицей наблюдения.
Еще один вид выборочного наблюдения - многофазовая выборка. Такая выборка включает определенное количество фаз, каждая из которых отличается подробностью программы наблюдения. Например, 25% всей генеральной совокупности обследуются по краткой программе, каждая 4-я единица из этой выборки обследуется по более полной программе и т.д.
При любом виде выборки отбор единиц производится тремя отмеченными способами. Рассмотрим процедуру случайного отбора. Прежде всего составляется список единиц совокупности, в котором каждой единице присваивается цифровой код (номер или метка). Затем производится жеребьевка. Закладываются в барабан шары с соответствующими номерами, они перемешиваются и проводится отбор шаров. Выпавшие номера соответствуют единицам, попавшим в выборку; число номеров равно запланированному объему выборки.
Отбор жеребьевкой может быть подвержен смещениям, вызванным недостатками техники (качеством шаров, барабана) и другими причинами. Более надежен с точки зрения объективности отбор по таблице случайных чисел. Такая таблица содержит серии цифр, чередующихся случайным образом, отобранных путем электронных сигналов. Так как мы пользуемся десятичной цифровой системой О, 1,2, ..., 9, вероятность появления любой цифры равна 1/10. Следовательно, если бы нужно было создать таблицу случайных чисел, включающую 500 знаков, то из них около 50 были бы 0, столько же - 1 и т.д. Ввиду того, что каждая цифра и их последовательность являются случайными, можно использовать таблицу, перемещаясь либо по ее вертикали, либо по горизонтали. Цифры сгруппированы по 5 для лучшей обозримости таблицы и пользования ею.
Предположим, что нам нужно из 9540 студентов университета произвести 5%-ную выборку: n = 5% • -N = 477 студентов. Ввиду того, что объем генеральной совокупности выражается четырехзначным числом, код каждого студента должен быть четырехзначным: от 0001 - для первого студента до 9540 - для последнего студента в списке. Чтобы произвести отбор по таблице случайных чисел, нужно выбрать начальную точку: можно закрыть глаза и поставить наугад точку в таблице карандашом. Предположим, мы попали в 13-ю строку в 1-й столбец (табл. 1).
Таблица 1
Пример использования таблицы случайных чисел
Строки Столбцы
1 2 3 4 5 6 7 8
13 90822 60280 88925 99610 42772 60561 76873 04117
14 72121 79152 96591 90305 10189 79778 68016 13747
15 95268 41377 25684 08151 61816 58555 54305 86189
16 92603 09091 75884 93424 72586 88903 30061 14457
17 18813 90291 05275 01223 79607 95426 34900 09778
18 38840 26903 28624 67157 51986 42865 14508 49315

Следовательно, единица с номером 9082 является первой в выборке. Если двигаться по строке, то единица с номером 2602 будет второй, 8088 - третьей, 9259 - четвертой. Следующий код 9610 пропускаем, так как у нас нет студента с таким номером. Далее в выборку попадают номера 4277, 2605, 6176, 8730, 4117, 7212, 1791, 5296, 5919, 0305, 1018. Код 9797 пропускается. Следующие отобранные номера 7868, 0161, 3747, 9526, 8413, 7725 и т.д.
Процедура продолжается, пока число отобранных номеров не составит требуемый объем выборки (n = 477).
Часто используется отбор по какой-либо схеме (так называемая направленная выборка). Схема отбора принимается такой, чтобы отразить основные свойства и пропорции генеральной совокупности. Простейший способ: по спискам единиц генеральной совокупности, составленным так, чтобы упорядочивание единиц было бы не связано с изучаемыми свойствами, проводится механический отбор единиц с шагом, равным N : п. Обычно отбор начинают не с первой единицы, а отступив полшага, чтобы уменьшить возможность смещения выборки. Частота появления единиц с теми или иными особенностями, например студентов с тем или иным уровнем успеваемости, живущих в общежитии, и т.д. будет определяться той структурой, которая сложилась в генеральной совокупности.
Для большей уверенности в том, что выборка отразит структуру генеральной совокупности, последняя подразделяется на типы (стра-ты или районы), и проводится случайный или механический отбор из каждого типа (района, страта). Общее число единиц, отобранных из разных типов, должно соответствовать объему выборки [7, c. 96].
Особые трудности возникают, когда нет списка единиц, а отбор нужно произвести либо на местности, либо из образцов продукции на складе готовой продукции. В этих случаях важно детально разработать схему ориентации на местности и схему отбора и следовать ей, не допуская отклонений. Например, счетчик имеет указание двигаться от определенной автобусной остановки на север по четной стороне улицы и, отсчитав два дома от первого угла, войти в третий и провести опрос в каждом 5-м жилом помещении. Неукоснительное следование принятой схеме обеспечивает выполнение главного условия формирования репрезентативной выборки - объективности отбора единиц.
От случайной выборки следует отличать квотный отбор, когда выборка конструируется из единиц определенных категорий (квот), которые должны быть представлены в заданных пропорциях. Например, при опросе покупателей универмага может быть запланировано провести отбор 150 респондентов, в том числе 90 женщин, из них 25 - девушек, 20 - молодых женщин с маленькими детьми, 35 -женщин среднего возраста, одетых в деловой костюм, 10 -женщин 50 лет и старше; кроме того, планировался опрос 70 мужчин, из них 25 - подростков и юношей, 20 - молодых мужчин с детьми, 15 -мужчин. Которые одеты в костюмы, 10 - мужчин, одетых в спортивную одежду. Для определения потребительских ориентации и предпочтений такая выборка, может быть, и хороша, но если мы захотим по ней установить среднюю сумму покупок, их структуру, мы получим непредставительные результаты. Это происходит потому, что квотная выборка нацелена на отбор определенных категорий.
Выборка может быть нерепрезентативной, даже если она формируется в соответствии с известными пропорциями генеральной совокупности, но отбор проводится без какой-либо схемы - единицы набираются как угодно, лишь бы обеспечить соотношение их категорий в тех же пропорциях, что и в генеральной совокупности (например, соотношение мужчин и женщин, респондентов в возрасте моложе и старше трудоспособного и в трудоспособном и т.д.).
Эти замечания должны предостеречь вас от подобных подходов к формированию выборки и еще раз подчеркнуть необходимость объективного отбора.

Заключение

Выборочное наблюдение является одним из наиболее широко применяемых видов несплошного наблюдения. В основе этого наблюдения лежит идея о том, что отобранная в случайном порядке некоторая часть единиц может представлять всю изучаемую совокупность явления по интересующим исследователя признакам.
Система правил отбора и способов характеристики единиц изучаемой совокупности составляет содержание выборочного метода, суть которого состоит в получении первичных данных при наблюдении выборки с последующим обобщением, анализом и их распространением на всю генеральную совокупность с целью получения достоверной информации об исследуемом явлении.
Вид формирования выборочной совокупности подразделяется на индивидуальный, групповой и комбинированный. Способ отбора может быть бесповторный и повторный.
Метод отбора определяет конкретный механизм выборки единиц из генеральной совокупности и подразделяется на: собственно случайный; механический; типический; серийный; комбинированный.
Для того чтобы можно было по выборке делать вывод о свойствах генеральной совокупности, выборка должна быть репрезентативной (представительной), т. е. она должна полно и адекватно представлять свойства генеральной совокупности. Репрезентативность выборки может быть обеспечена только при объективности отбора данных.

Список литературы

1. Григорьева, Р.П. Статистика / Р.П. Григорьева. – М.: Изд-во Михайлова, 2009. – 510с.
2. Гусынин, А.Б. Статистика / А.Б. Гусынин. – М.: Норма, 2010. – 452с.
3. Елисеева И.И. Общая теория статистики / И.И. Елисеева, М.М. Юзбашев. – М.: Финансы и статистика, 2004. – 338с.
4. Золотарев, А.А.Статистика / А.А. Золотарев. – М.: Владос, 2009. – 446с.
5. Калинин, В.А. Макроэкономическая статистика / В.А. Калинин. – М.: Дело, 2010. – 602с.
6. Сиденко, А.В. Статистика / А.В. Сиденко. – М.: Финансы и статистика, 2009. – 500с.
7. Статистика. Курс лекций. / Под ред. Л.П. Харченко, В.Г. Ионин и др. Новосибирск, НГАЭиУ, 2007. – 384с.
8. Теория статистики / Под ред. Р.А.Шмойловой. – М.: Финансы и статистика, 2007. – 580с.

(30.0 KiB, 32 downloads)

© Размещение материала на других электронных ресурсах только в сопровождении активной ссылки

Вы можете заказать оригинальную авторскую работу на эту и любую другую тему.

Контрольные работы в Магнитогорске, контрольную работу купить, курсовые работы по праву, купить курсовую работу по праву, курсовые работы в РАНХиГС, курсовые работы по праву в РАНХиГС, дипломные работы по праву в Магнитогорске, дипломы по праву в МИЭП, дипломы и курсовые работы в ВГУ, контрольные работы в СГА, магистерские диссертации по праву в Челгу.

Комментарии к записи "Способы отбора и виды выборки"
Оставить комментарий
  1. Новый подход к измерению репрезентативности:
    Ильясов Ф. Н. Репрезентативность результатов опроса в маркетинговом исследовании // Социологические исследования. 2011. № 3. С. 112-116. - www.iliassov.info/2011/peprez.html

Здесь вы можете написать комментарий

* Обязательные для заполнения поля
Все отзывы проходят модерацию.
Навигация
Связаться с нами
Наши контакты

vadimmax1976@mail.ru

8-908-07-32-118

8-902-89-18-220

О сайте

Magref.ru - один из немногих образовательных сайтов рунета, поставивший перед собой цель не только продавать, но делиться информацией. Мы готовы к активному сотрудничеству!