Общее понятие об индексах и их классификация

6 Июн 2014 | Автор: | Комментариев нет »

Содержание

Введение 3
1. Индексы, их общая характеристика и сфера применения 4
2. Классификация индексов 6
3.  Виды индексов и их классификация 8
Заключение 19
Список литературы 20

Введение

Индексы относятся к важнейшим обобщающим показателям. Индекс - от латинского index - указатель, показатель. Обычно в экономической статистике этот термин используется для обобщающей характеристики изменений.
Под индексом в статистике понимают относительный показатель, характеризующий изменение величины какого-либо явления (простого или сложного, состоящего из соизмеримых или несоизмеримых элементов) во времени, пространстве или по сравнению с любым эталоном (нормативом, планом, прогнозом и т.д.).
Когда рассматривается сопоставление уровней изучаемого явления во времени, то говорят об индексах динамики, в пространстве - о территориальных индексах, при сопоставлении с уровнем, например, договорных обязательств - об индексах выполнения обязательств и т.д.
Целью работы является анализ статистических индексов и их классификации.
Объект работы – статистические индексы.
Предмет работы – понятие, виды и классификация статистических индексов.
Цель и задачи работы обусловили постановку следующих целей:
1) проанализировать понятие и сущность статистических индексов;
2) определить виды и классификации статистических индексов.
Структура работы. Данная работа состоит из введения, трех параграфов, заключения, списка литературы.

1. Индексы, их общая характеристика и сфера применения

В статистической практике индексный метод имеет такое же широкое распространение, как и метод средних величин.
Индексами называют сравнительные относительные величины, которые характеризуют изменение сложных социально-экономических показателей (показатели, состоящие из несуммируемых элементов) во времени, в пространстве, по сравнению с планом [9, c. 34].
Основным элементом индексного отношения является индексируемая величина. Под индексируемой величиной понимается значение признака статистической совокупности, изменение которой является объектом изучения.
Поскольку объекты изучения индексов весьма разнообразны, то они широко применяются в экономической практике.
С помощью индексов решаются три главные задачи.
Во-первых, индексы позволяют измерять изменение сложных явлений. Например, требуется установить, насколько увеличился (или уменьшился) в данном году по сравнению с прошлым годом физический объем всей продукции предприятия. Ясно, что продукция разного вида и качества не поддается непосредственному суммированию. Для характеристики изменения таких сложных явлений во времени применяют индексы динамики. В качестве меры соизмерения (весов) разнородных продуктов можно использовать цену, себестоимость, трудоемкость продукции и т.д. [9, c. 39]
При помощи индексов можно характеризовать изменение во времени самых различных показателей: ВВП, реальных располагаемых денежных доходов, численности работающих, уровня безработицы, цен акций предприятий региона, себестоимости, производительности труда и т.п.
Во-вторых, с помощью индексов можно определить влияние отдельных факторов на изменение динамики сложного явления (например, влияние изменения уровня цен и изменения количества проданных товаров на объем товарооборота). Используя взаимосвязь индексов можно установить в какой мере выпуск продукции возрос за счет увеличения численности работников и в какой мере - за счет повышения производительности труда.
В-третьих, индексы являются показателями сравнений не только с прошлым периодом (сравнение во времени), но и с другой территорией (сравнение в пространстве), а также с нормативами, планами, прогнозами. Например, можно сравнить среднедушевое потребление какого-либо продукта в России и в развитых странах, а также провести сравнение с нормативом рационального питания [5, c. 82].
Индекс - это результат сравнения двух одноименных показателей, при исчислении которого следует различать числитель индексного отношения (сравниваемый или отчетный уровень) и знаменатель индексного отношения (базисный уровень, с которым производится сравнение). Выбор базы зависит от цели исследования. Если изучается динамика, то за базисную величину может быть взят размер показателя в периоде, предшествующем отчетному. Если необходимо осуществить территориальное сравнение, то за базу можно принять данные другой территории. За базу сравнения могут приниматься плановые показатели, если необходимо использовать индексы как показатели выполнения плана.
Индексы формируют важнейшие экономические показатели национальной экономики и ее отдельных отраслей. Индексные показатели позволяют осуществить анализ результатов деятельности предприятий и организаций, выпускающих самую разнообразную продукцию или занимающихся различными видами деятельности. С помощью индексов можно проследить роль отдельных факторов при формировании важнейших экономических показателей, выявить основные резервы производства. Индексы широко используются в сопоставлении международных экономических показателей при определении уровня жизни, деловой активности, ценовой политики и т.д.
Существует два подхода в интерпретации возможностей индексных показателей: обобщающий (синтетический) и аналитический, которые в свою очередь определяются разными задачами [1, c. 22].
Суть обобщающего подхода - в трактовке индекса как показателя среднего изменения уровня исследуемого явления. В этом случае основной задачей, решаемой с помощью индексных показателей, будет характеристика общего изменения многофакторного экономического показателя.
Аналитический подход рассматривает индекс как показатель изменения уровня результативной величины, на которую оказывает влияние величина, изучаемая с помощью индекса. Отсюда и иная задача, которая решается с помощью индексных показателей: выделить влияние одного из факторов в изменении многофакторного показателя.
От содержания изучаемых показателей, методологии расчета первичных показателей, целей и задач исследования зависят и способы построения индексов.

2. Классификация индексов

Индексы классифицируют по трем признакам: по характеру изучаемых объектов; степени охвата элементов совокупности; методам расчета общих индексов [9, c. 33].
По содержанию индексируемых величин индексы разделяют на индексы количественных (объемных) и индексы качественных показателей.
Индексы количественных показателей — индексы физического объема промышленной и сельскохозяйственной продукции, физического объема розничного товарооборота, национального дохода, потребления продаж иностранной валюты и др. Все индексируемые показатели этих индексов являются объемными, поскольку они характеризуют общий, суммарный размер (объем) того или иного явления и выражаются абсолютными величинами. При расчете таких индексов количества оцениваются в сопоставимых ценах.
Индексы качественных показателей — индексы курса валют, цен, себестоимости, производительности труда, средней заработной платы, урожайности и др. Индексируемые показатели этих индексов характеризуют уровень явления в расчете на количественно измеримую   единицу совокупности: цена за единицу продукции, себестоимость единицы продукции, выработка в единицу времени (или на одного работника), заработная плата одного работника, урожайность с одного гектара и т.д. Такие показатели называются качественными. Они носят расчетный, вторичный характер. Качественные показатели измеряют не общий объем, а интенсивность, эффективность явления или процесса. Как правило, они являются либо средними, либо относительными величинами. Расчет таких индексов производится на базе одинаковых, неизменных количеств продукции.
Разделение индексов на индексы количественных и качественных показателей важно для методологии их расчета.
По степени охвата единиц совокупности индексы делятся на два класса: индивидуальные и общие.
Индивидуальные индексы служат для характеристики изменения отдельных элементов сложного явления (например, изменение объёма выпуска телевизоров определенной марки, рост или падение цен на акции в каком-либо акционерном обществе и т.д.)
Общий индекс - отражает изменение всех элементов сложного явления. При этом под сложным явлением понимают такую статистическую совокупность, отдельные элементы которой непосредственно не подлежат суммированию (физический объем продукции, включающей разноименные товары, цены на разные группы продуктов и т.д.).
Если индексы охватывают не все элементы сложного явления, а лишь часть, то их называют групповыми или субиндексами (например, индексы продукции по отдельным отраслям промышленности) [4].
Методика расчета общих индексов сложнее, чем индивидуальных, и различна в зависимости от характера индексируемых показателей, наличия исходных данных и целей исследования.
Любые общие индексы могут быть построены двумя способами: как агрегатные и как средние из индивидуальных. Последние в свою очередь делятся на средние арифметические и средние гармонические. Агрегатные индексы качественных показателей могут быть рассчитаны как индексы переменного состава и индексы постоянного (фиксированного) состава. В индексах переменного состава сопоставляются показатели, рассчитанные на базе изменяющихся структур явлений, а в индексах постоянного состава - на базе неизменной структуры явлений.
Агрегатный индекс является основной формой индекса. "Агрегатным" он называется потому, что его числитель и знаменатель представляют собой набор - "агрегат" (от латинского aggregatus - складываемый, суммируемый) непосредственно несоизмеримых и не поддающихся суммированию элементов -сумму произведений двух величин, одна из которых меняется (индексируется), а другая - остается неизменной в числителе и знаменателе (вес индекса). Вес индекса служит для соизмерения индексируемых величин.

3.  Виды индексов и их классификация

К индексам количественных (объемных) показателей относятся такие индексы, как индексы физического объема производства продукции, затрат на выпуск продукции, стоимости продукции, а также индексы показателей, размеры которых определяются абсолютными величинами. Используются различные виды индексов количественных показателей.
Индекс физического объема продукции (ФОП) отражает изменение выпуска продукции.
Индивидуальный индекс ФОП отражает изменение выпуска продукции одного вида и определяется по формуле

где q1 и q0 - количество продукции данного вида в натуральном выражении в текущем и базисном периодах.
Агрегатный индекс ФОП (предложен Э. Ласпейресом) отражает изменение выпуска всей совокупности продукции, где индексируемой величиной является количество продукции q, а соизмерителем - цена р:

где q1 и q0 - количество выработанных единиц отдельных видов продукции соответственно в отчетном и базисном периодах; p0 - цена единицы продукции (отдельного вида) в базисном периоде.
При вычислении индекса ФОП в качестве соизмерителей может выступать также себестоимость продукции или трудоемкость [9, c. 54].
Средние взвешенные индексы ФОП используются в том случае, если известны индивидуальные индексы объема по отдельным видам продукции и стоимость отдельных видов продукции (или затраты) в базисном или отчетном периоде.
Средний взвешенный арифметический индекс ФОП определяется по формуле

где iq - индивидуальный индекс по каждому виду продукции; q0 p0 - стоимость продукции каждого вида в базисном периоде.
Средний взвешенный гармонический индекс ФОП

где q1 p1 - стоимость продукции каждого вида в текущем периоде.
Аналогично рассчитывается индекс затрат на выпуск продукции (ЗВП), который отражает изменение затрат на производство и может быть как индивидуальным, так и агрегатным.
Индивидуальный индекс ЗВП отражает изменение затрат на производство одного вида и определяется по формуле

где z1 и z0 - себестоимость единицы продукции искомого вида в текущем и базисном периодах; q1 z1 и q0 z0 - суммы затрат на выпуск продукции искомого вида в текущем и базисном периодах.
Агрегатный индекс ЗВП характеризует изменение общей суммы затрат на выпуск продукции за счет изменения количества выработанной продукции и ее себестоимости и определяется по формуле

где q1 z1 и q0 z0 - затраты на выпуск продукции каждого вида соответственно в отчетном и базисном периодах.
Рассмотрим построение индекса стоимости продукции (СП), который может определяться и как индивидуальный, и как агрегатный.
Индивидуальный индекс СП характеризует изменение стоимости продукции данного вида и имеет вид:

где p1 и p0 - цена единицы продукции данного вида в текущем и базисном периодах; q1 p1 и q0 p0 - стоимость продукции данного вида в текущем и базисном периодах [9].
Агрегатный индекс СП (товарооборота) характеризует изменение общей стоимости продукции за счет изменения количества продукции и цен и определяется по формуле

Качественные показатели определяют уровень исследуемого итогового показателя и определяются путем соотношения итогового показателя и определенного количественного показателя (например, средняя заработная плата определяется путем соотношения фонда заработной платы и количества работников). К индексам качественных показателей относятся индексы цен, себестоимости, средней заработной платы, производительности труда.
Самым распространенным индексом в этой группе является индекс цен.
Индивидуальный индекс цен характеризует изменение цен по одному виду продукции и определяется по формуле

где p1 и p0 - цена за единицу продукции в текущем и базисном периодах.
Соответственно определяются индексы себестоимости и затрат рабочего времени по каждому виду продукции.
Агрегатный индекс цен определяет среднее изменение цены р по совокупности определенных видов продукции q.
Для характеристики среднего изменения цен на потребительские товары используют индекс цен, предложенный Э. Ласпейресом (индекс Ласпейреса):

где q0 - потребительская корзина (базовый период); p0 и p1 - соответственно цены базисного и отчетного периодов.
Если количество набора продуктов принимается на уровне отчетного периода (q1 ), то в этом случае индекс цен именуется индексом Пааше:

Если известны индивидуальные индексы цен по отдельным видам продукции и стоимость отдельных видов продукции, то применяются средние взвешенные индексы цен (средний взвешенный арифметический и средний взвешенный гармонический индексы цен).
Формула среднего взвешенного арифметического индекса цен

где i - индивидуальный индекс по каждому виду продукции; p0 q0 - стоимость продукции каждого вида в базисном периоде.
Формула среднего взвешенного гармонического индекса цен

где p1 q1 - стоимость продукции каждого вида в текущем периоде.
В статистической практике очень широко используется агрегатный территориальный индекс цен, который может быть рассчитан по следующей формуле:

где pA pB - цена за единицу продукции каждого вида соответственно на территории А и В; qA - количество выработанной или реализованной продукции каждого вида по территории А (в натуральном выражении).
Из формулы видно, что в данном индексе в качестве фиксированного показателя (веса) принят объем продукции территории А. При расчете данного индекса в качестве веса можно принять также объем продукции территории В или суммарный объем продукции двух территорий.
Возможны два способа расчета индексов: цепной и базисный.
Цепные индексы получают путем сопоставления текущих уровней с предшествующим, при этом база сравнения постоянно меняется.
Базисные индексы получают путем сопоставления с тем уровнем периода, который был принят за базу сравнения.
В качестве примера можно привести цепные и базисные индексы цен.
Цепные индивидуальные индексы цен имеют следующий ряд расчета:

Базисные индивидуальные индексы цен:

Следует помнить, что произведение цепных индивидуальных индексов цен равно последнему базисному индексу:

Цепные агрегатные индексы цен:

Базисные агрегатные индексы цен:

Между индексами существует также взаимосвязь и взаимозависимость, как и между самими экономическими явлениями, что позволяет проводить факторный анализ. Благодаря индексному методу можно рассматривать все факторы независимо друг от друга, что дает возможность определить размер абсолютного изменения сложного явления за счет каждого фактора в отдельности.
Предположим, что результативный признак зависит от трех факторов и более. В этом случае результативный индекс примет вид

Изменение результативного индекса за счет каждого фактора может быть выражено следующим образом:

Для выявления роли каждого фактора в отдельности индекс сложного показателя разлагают на частные (факторные) индексы, которые характеризуют роль каждого фактора. При этом используют два метода:
o метод обособленного изучения факторов;
o последовательно-цепной метод.
При первом методе сложный показатель берется с учетом изменения лишь того фактора, который взят в качестве исследуемого, все остальные остаются неизменными на уровне базисного периода [6, c. 71].
Последовательно-цепной метод предполагает использование системы взаимосвязанных индексов, которая требует определенного расположения факторов. Как правило, на первом месте в цепи располагают качественный фактор. При определении влияния первого фактора все остальные сохраняются в числителе и знаменателе на уровне базисного периода, при определении второго факторного индекса первый фактор сохраняется на уровне базисного периода, а третий и все последующие - на уровне отчетного периода, при определении третьего факторного индекса первый и второй факторы сохраняются на уровне базисного периода, четвертый и все остальные - на уровне отчетного периода и т.д.
Переход к рыночным отношениям сопровождается инфляционными процессами. Инфляция - повышение общего для всей экономики страны уровня цен на потребительские товары и услуги вследствие обесценивания бумажных денег, находящихся в обращении сверх реальных потребностей всей экономики. Это падение покупательной способности денежной единицы. Инфляция и дефляция (снижение общего уровня цен) усложняют подсчет важнейших экономических показателей системы национальных счетов: НД, ВВП, ВНП и т.д. Например, затруднительно ответить на вопрос, вызван ли 4 %-ный рост ВВП увеличением на 4% объема производства при нулевой инфляции, либо он вызван 4 %-ной инфляцией при неизменном объеме производства, либо каким-нибудь иным сочетанием изменений объема производства и уровня цен (например, 2 %-ным ростом производства и 2 %-ной инфляцией). Проблема заключается в том, чтобы пересчитать значения важнейших стоимостных показателей С НС из фактических цен в сопоставимые. Осуществляется это с помощью индексов-дефляторов.
Дефлятор - это коэффициент, переводящий значение стоимостного показателя за отчетный период в стоимостные измерители базисного. Например, индекс-дефлятор валового внутреннего продукта (ДВВП) представляет собой индекс цен, применяемый для корректировки номинального объема ВВП с учетом инфляции и получения на этой основе реального объема ВВП [6, c. 78].
Индекс-дефлятор ВВП для определенного года в общем виде представляет собой отношение стоимости продукции отчетного периода к стоимости объема продукции, структура которого аналогична структуре отчетного года, но определенного в ценах базисного года:
Наиболее простым методом дефлирования или инфлирования номинального ВВП данного года является деление номинального ВВП на индекс цен.
Номинальный ВВП измеряет объем производства потребительских товаров и услуг на экономической территории страны текущего года (#) в текущих ценах (р.).
С помощью реального ВВП (скорректированного на инфляцию и дефляцию) измеряется объем производства этих же материальных благ и услуг текущего года (q\) в ценах, которые сложились в базисном году (Ро).
В качестве соизмерителя степени инфляции (ценового индекса) в знаменателе формулы чаще всего используется сводный индекс потребительских цен (ИПЦ), индекс - дефлятор ВВП.
Наиболее распространенным показателем инфляции является ИПЦ, который прост для расчета и может быть определен за короткие промежутки времени (месяц, квартал).
Индексы потребительских цен исчисляются по формуле Ласпейреса, т.е. с использованием в качестве весов данных о структуре расходов в базисном периоде. Однако для переоценки (ВВП) более предпочтительны индексы цен Пааше, исчисляемые с использованием в качестве весов структуры потребительских расходов в отчетном периоде. Поэтому, если между индексами Ласпейреса и Пааше ожидаются существенные различия, первые должны быть "перевзвешены" по весам отчетного периода для приспособления их к задачам дефлятирования ВВП.
Дефлятор ВВП, более чем ИПЦ, приспособлен для нахождения изменения общего для всей экономики страны уровня цен на товары и услуги. Дефлятор ВВП шире, чем ИПЦ, поскольку включает в себя не только цены потребительских товаров и услуг, но также цены покупаемых правительством товаров и инвестиционных товаров и услуг. Кроме того, дефлятор ВВП характеризует изменение оплаты труда, прибыли (включая смешанные доходы) и потребление основного капитала в результате изменения цен, а также номинальной массы чистых доходов. Индекс рассчитывается, как правило, за годичный период.
Подводя итоги, можно сказать, что с помощью показателя реального ВВП измеряется стоимость общего объема отечественного производства в разные годы в предположении неизменного уровня цен, начиная с базисного года и на протяжении всего рассматриваемого периода. Таким образом, реальный ВВП показывает рыночную стоимость продукции каждого года, измеренную в постоянных ценах, т.е. в рублях, которые имеют ту же покупательную способность, как и в базисном году.
Поскольку показатели номинального ВВП отражают изменения как объема производства, так и цены, то показатели реального ВВП позволяют подсчитать изменение реального объема производства, так как они предполагают неизменный уровень цен.
Реальный ВВП является более точной по сравнению с номинальным ВВП характеристикой функционирования экономики. Общепризнано, что если ежегодный прирост реального ВВП превышает 4 %, то состояние экономики можно считать стабильным, а если не превышает - это свидетельствует о спаде производства, росте безработицы и дестабилизации экономики.
В статистической практике индексы-дефляторы определяются не только в целом по всей экономике страны. Они исчисляются по отдельным регионам, различным товарным группам, отраслям экономики и т.д.
Индексный метод не только характеризует динамику сложного явления, но и анализирует влияние на нее отдельных факторов.
Многие статистические показатели, характеризующие различные стороны общественных явлений, находятся между собой в определенной связи (часто в виде произведения) [6].
Так, объем выработанной продукции равен произведению производительности труда на численность занятых на предприятии работников; товарооборот является произведением количества проданной продукции на цену; валовой сбор той или иной культуры - произведением урожайности на посевную площадь и т.д. Форма взаимосвязи между такими показателями выявляется на основе теоретического анализа. Статистика характеризует эти взаимосвязи количественно.
Все соотношения в таких произведениях рассматриваются как факторы, определяющие значение результативного показателя. Так, объем выработанной продукции на любом предприятии может изменяться за счет совместного изменения двух факторов: производительности труда и численности работающих; товарооборот может изменяться за счет изменения количества (объема) проданных товаров и за счет изменения цен и т.д.
Связь между экономическими показателями находит отражение и во взаимосвязи характеризующих их индексов. Поэтому многие экономические показатели, тесно связанные между собой, образуют индексные системы.
Система взаимосвязанных индексов дает возможность широко применять индексный метод для изучения взаимосвязей общественных явлений, проведения факторного анализа с целью определения роли отдельных факторов (не зависимых друг от друга) на изменение сложного явления.
В отечественной статистике принята следующая практика факторного анализа. Если результативный показатель можно представить как произведение объемного и качественного факторов, то, определяя влияние объемного фактора на изменение результативного показателя, качественный фактор фиксируют на уровне базисного периода. Если же определяется влияние качественного показателя, то объемный фактор фиксируется на уровне отчетного периода.
По существу, любой агрегатный индекс построен по такому принципу обособленного рассмотрения влияния отдельных факторов на изменение сложного показателя.

Заключение

Итак, индексами называют сравнительные относительные величины, которые характеризуют изменение сложных социально-экономических показателей (показатели, состоящие из несуммируемых элементов) во времени, в пространстве, по сравнению с планом.
По степени охвата элементов явления индексы делят на индивидуальные и общие. Индивидуальные индексы - это индексы, которые характеризуют изменение только одного элемента совокупности.
Общий индекс характеризует изменение по всей совокупности элементов сложного явления. Если индексы охватывают только часть явления, то их называют групповыми. В зависимости от способа изучения общие индексы могут быть построены или как агрегатные (от лат. аggrega - присоединяю) индексы, или как средние взвешенные индексы (средние из индивидуальных).
Способ построения агрегатных индексов заключается в том, что при помощи так называемых соизмерителей можно выразить итоговые величины сложной совокупности в отчетном и базисном периодах, а затем первую сопоставить со второй.
В статистике имеют большое значение индексы переменного и фиксированного состава, которые используются при анализе динамики средних показателей.
Индексом переменного состава называют отношение двух средних уровней.
Индекс фиксированного состава есть средний из индивидуальных индексов. Он рассчитывается как отношение двух стандартизованных средних, где влияние изменения структурного фактора устранено, поэтому данный индекс называют еще индексом постоянного состава.

Список литературы

1. Башина, О.Э. Общая теория статистики / О.Э. Башина. – М.: Финансы и статистика, 2008. – 456с.
2. Григорьева, Р.П. Статистика / Р.П. Григорьева. – М.: Изд-во Михайлова, 2009. – 510с.
3. Гусынин, А.Б. Статистика / А.Б. Гусынин. – М.: Норма, 2010. – 452с.
4. Гусаров, В.М. Статистика / В.М. Гусаров. – М.: Дашков и ко, 2010. – 662с.
5. Елисеева И.И. Общая теория статистики / И.И. Елисеева, М.М. Юзбашев. – М.: Финансы и статистика, 2004. – 338с.
6. Золотарев, А.А.Статистика / А.А. Золотарев. – М.: Владос, 2009. – 446с.
7. Калинин, В.А. Макроэкономическая статистика / В.А. Калинин. – М.: Дело, 2010. – 602с.
8. Сиденко, А.В. Статистика / А.В. Сиденко. – М.: Финансы и статистика, 2009. – 500с.
9. Статистика. Курс лекций. / Под ред. Л.П. Харченко, В.Г. Ионин и др. Новосибирск, НГАЭиУ, 2007. – 384с.
10. Теория статистики / Под ред. Р.А.Шмойловой. – М.: Финансы и статистика, 2007. – 580с.
11. Ячиков, Р.А. Теория статистики / Р.А. Ячиков. – М.: Финансы и статистика, 2009. – 398с.

(30.0 KiB, 36 downloads)

© Размещение материала на других электронных ресурсах только в сопровождении активной ссылки

Вы можете заказать оригинальную авторскую работу на эту и любую другую тему.

Контрольные работы в Магнитогорске, контрольную работу купить, курсовые работы по праву, купить курсовую работу по праву, курсовые работы в РАНХиГС, курсовые работы по праву в РАНХиГС, дипломные работы по праву в Магнитогорске, дипломы по праву в МИЭП, дипломы и курсовые работы в ВГУ, контрольные работы в СГА, магистерские диссертации по праву в Челгу.

Здесь вы можете написать комментарий

* Обязательные для заполнения поля
Все отзывы проходят модерацию.
Навигация
Связаться с нами
Наши контакты

vadimmax1976@mail.ru

8-908-07-32-118

8-902-89-18-220

О сайте

Magref.ru - один из немногих образовательных сайтов рунета, поставивший перед собой цель не только продавать, но делиться информацией. Мы готовы к активному сотрудничеству!